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els. As the standard modelling language for software systems is the Unified Modelling
Language (UML), quality assurance of UML models is a major research field in Computer
Science. Understandability, i.e. a model’s ability to be easily understood, is one model qual-
ity property that is currently heavily under investigation. In particular, researchers are

ﬁe&{vord&' searching for the factors that determine an UML model’s understandability and are looking
Statechart diagram for ways to manipulate these factors. This paper presents an empirical study investigating
Model quality the effect that structural complexity has on the understandability of one particular type of
Structural complexity UML model, i.e. the statechart diagram. Based on data collected in a family of three exper-
Understandability iments, we have identified three dimensions of structural complexity that affect under-
Metrics standability: (i) the size and control flow complexity of the statechart in terms of
Prediction features such as the number of states, events, guards and state transitions; (ii) the actions
Empir,ical ‘f’“dation that are performed when entering or leaving a state; (iii) the sequence of actions that is
Xperimen

performed while staying within a state. Based on these structural complexity dimensions
we have built an understandability prediction model using a regression technique that is
specifically recommended for data obtained through a repeated measures design. Our test
results show that each of the underlying structural complexity dimensions has a significant
impact on the understandability of a statechart diagram.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The Model-Driven Development (MDD) [1] Software Engineering paradigm and the Model-Driven Architecture (MDA)
[41] architectural framework, which provides a concrete implementation of MDD principles, recognize that models are
the foundation of software system development. As no system can be built on loose foundations, the focus of software qual-
ity assurance is shifting from system implementation (software testing) towards system modelling (model verification and
validation).
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To assure model quality, instruments are needed to measure and evaluate quality. Since the Unified Modelling Language
(UML!) [42] became the standard language for modelling software systems, numerous quality metrics have been proposed for
UML models. These proposals mainly relate to UML'’s structural and functionality modelling techniques, in particular to class
diagrams [2,27,29], and use case diagrams [5,29,31,49]. The development of metrics for diagrams used as behavioural models
has been less emphasized. Moreover, the metric proposals for the behavioural type of UML diagrams [14,15,47,54] have not
gone beyond the definition step, and no validation has been performed. However, due to the widespread use of some types
of behavioural diagrams [7,51], in particular statechart diagrams, there is an interest in controlling also the quality of these dia-
grams [2,35]. Our research aims at meeting this interest and thus focuses on instruments to measure, investigate and control the
quality of UML statechart diagrams.

The framework for our research is the one defined by Briand et al. [10,12], which is the basis for much empirical research
in the area of software quality [21,37,48]. For example, this framework was used by Siau [51] for understanding the
complexity of UML. This framework hypothesizes that the structural complexity of a software model affects its cognitive
complexity [13]. Cognitive complexity refers to the mental burden that persons (e.g. analysts, designers, developers, testers,
maintainers, end-users ...) experience when building, validating, verifying or using models. Cognitive complexity is, however,
difficult to measure. To distinguish from cognitive complexity, we will refer to a model’s collection of structural properties as
its structural complexity, which is a measurable kind of complexity. According to Systems Theory, the complexity of a system
is based on the number of (different types of) elements and on the number of (different types of) (dynamically changing)
relationships between them [45]. Hence, the structural complexity of a software model is determined by the elements that
compose it.

Briand et al.’s framework hypothesizes that high cognitive complexity will result in reduced understandability which im-
pedes the analyzability, adaptability and flexibility of the model, amongst other model qualities. This hypothesized relation-
ship between structural complexity and external quality properties like understandability and modifiability has been
repeatedly demonstrated [21,22,47,51]. According to Briand et al. [12], it is difficult to imagine what could be alternative
explanations for these results besides cognitive complexity mediating the effect of structural complexity on quality.

Models that are hard to understand are difficult to analyze, modify, extend, integrate with other diagrams, and reuse. To
achieve the promised benefits of MDD in terms of increased reusability and productivity, it is necessary to control model
understandability. Understandability, per se, is not an easy-to-measure quality attribute, at least objectively and, specially,
in the early stages of the software development process. Therefore, an indirect measurement (i.e. a prediction) based on the
structural properties of the model is useful [11,24].

In previous work we have developed a set of structural complexity metrics for UML statechart diagrams [19,40] and we
have empirically shown that some of these metrics are statistically correlated with various direct measures of understand-
ability. However, we also noticed that most of these metrics are heavily intercorrelated and as such provide little insight into
the underlying factors that determine a statechart diagram’s structural complexity and impact its understandability. Fur-
thermore, comparing the structural complexity of alternative diagrams by means of up to 10 different values is less practical
than working with only a few values (e.g. is model A really better than model B if it scores better on seven out of 10 metrics
whereas the other three metrics would indicate the opposite?). Also, how to control the complexity of a model if one has to
look at 10 different indicators with partially overlapping behaviour?

So the goal of the current research is to reduce the number of elements to work with when indirectly measuring the
understandability of an UML statechart diagram via structural complexity metrics. The data reduction technique that we
use for this purpose is Principal Component Analysis (PCA). The principal components that we discovered by applying
PCA on a large number of UML statechart diagrams reveal underlying dimensions of structural complexity that are captured
by the metrics. Hence, they reveal the factors that impact structural complexity, and indirectly also understandability.

Based on the principal components identified, we further construct understandability prediction models using data gath-
ered in a family of experiments. For constructing the prediction models we use a regression technique that is specifically
recommended for data obtained through a repeated measures design. Our test results show that each of the underlying
structural complexity dimensions has a significant impact on the understandability of a statechart diagram and that predict-
ing understandability based on a few indicators (instead of using a comprehensive metrics suite) gives good results.

The paper is structured as follows: In Section 2 we identify the modelling constructs that contribute to the structural
complexity of UML statechart diagrams and we review the previously defined metrics suite for UML statechart diagram
structural complexity. In Section 3 these metrics are applied to a large sample of statechart diagrams and next PCA is applied
to the obtained metric values in order to detect the underlying dimensions of structural complexity that are captured
through the metrics. Based on this understanding, a family of laboratory experiments was conducted in order to develop
understandability prediction models using the principal components as predictor variables. In Section 4 the design of this
family of experiments is presented. The analysis of the data and the interpretation of the results is the subject of Section 5.
In the final Section 6, conclusions are presented and suggestions for further research are suggested.

1 This research is based on the ISO standard ISO/IEC 19501 for UML, i.e. version 1.4.2 [42]. Although newer versions of UML have been released (i.e. the most
recent one being UML 2.2 [44]), these new versions do not introduce new features to the UML statechart meta-model that would significantly affect the
treatment of UML statechart diagrams in this paper.
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2. Metrics definition

Based on the UML meta-model [42], our previous experiences with measuring UML statechart diagrams [18,40], and the
most commonly used elements in UML statechart diagrams .[23], we considered the following UML constructs as contrib-
uting to the structural complexity of UML statechart diagrams:

e State. A state models a situation during which some invariant condition holds. This invariant may represent a static sit-
uation such as an object waiting for some external event to occur. However, it can also model dynamic conditions such
as the process of performing some activity; that is, the model element under consideration enters the state when the
activity commences and leaves it as soon as the activity is completed. Specialisations of state include composite state
and simple state. A composite state is a state that contains other states (i.e. sub-states). A simple state is a state that does
not contain sub-states.

e Action. An action is a specification of an executable statement that forms an abstraction of a computational procedure, and
can be realized by sending a message to an object or by modifying a link or a value of an attribute. There exist several types
of actions: entry actions, exit actions and do/Activities. An entry action is an optional action that is executed whenever the
state wherein it is defined is entered regardless of the transition taken to reach that state. An exit action is an optional
action that is executed whenever the state wherein it is defined is exited regardless of which transition was taken out
of the state. A do/Activity is an optional activity that is executed while being in the state. The execution starts when this
state is entered, and stops either by itself, or when the state is exited, whichever comes first.

e Transition. A transition is a directed relationship between a source state and a target state. It may be part of a compound
transition, which takes the state machine from one state configuration to another, representing the complete response of
the state machine to a particular event instance.

e Event. An event is the specification of a type of observable occurrence. The occurrence that generates an event instance is
assumed to take place at an instant in time with no duration. Events trigger (compound) transitions.

e Guard. A guard is a boolean expression that is attached to a transition as a fine-grained control over its firing. The guard is
evaluated when an event instance is dispatched by the state machine. If the guard is true at that time, the transition is
enabled, otherwise, it is disabled. Guards should be pure expressions without side effects and have an expression attri-
bute, which is the boolean expression that specifies the guard.

Based on these constructs, we defined in [19,40] a set of nine metrics for measuring UML statechart diagram structural
complexity. A working hypothesis underlying the metric definition is that the more a particular construct is used when
developing a statechart diagram, the more that construct adds to the structural complexity of the diagram. Hence, each met-
ric captures the extent to which a particular construct is used in a diagram.

Next, a brief description of the metrics is presented. Further details about their definition can be found in [19,40].

NEntryA (Number of Entry Actions): The total number of entry actions on the statechart diagram.

NEXitA (Number of Exit Actions): The total number of exit actions on the statechart diagram.

NA (Number of Activities): The total number of do/Activities in the statechart diagram.

NSS (Number of Simple States): The total number of simple states considering also the simple states within the composite
states.

NCS (Number of Composite States): The total number of composite states.

NG (Number of Guards): The total number of guard conditions.

NE (Number of Events): The total number of events.

NT (Number of Transitions): The total number of transitions, considering common transitions (the source and the target
states are different), the initial and final transitions, self-transitions (the source and the target states are the same) and
internal transitions (transitions inside a composite state that respond to an event but without leaving the state).

e CC(Cyclomatic Complexity): It is defined as [INSS — NT + 2|, where NSS is the Number of Simple States and NT is the Number
of Transitions. The CC metric is based on McCabe’s cyclomatic complexity metric [38] which equates the structural com-
plexity of a control-flow type of diagram to the cyclomatic number of the underlying directed graph (i.e. a particular mor-
phological property of the graph). In our adaptation, the arches of the graph correspond to the transitions in the statechart
diagram and the nodes correspond to the simple states. The CC metric thus balances the number of states and state tran-
sitions. The higher the NT value relative to the NSS value, the higher the value of CC gets (because it is an absolute value),
and the more complex the statechart diagram. Whereas there is a certain lower bound on the value of NT for a given NSS
(because the states in a statechart diagram are connected), the CC metric captures the extra complexity that is added
when increasing the number of state transitions for a diagram with a certain number of states (or as we could say, for
a diagram of a given size).

All these metrics were defined in a methodological way following three main steps: metric definition and formalization,
analytical/theoretical validation and empirical validation. The metrics were defined in [19] based upon an earlier, incomplete
proposal [26,40]. The formalization of the metrics was performed in [17] with the Object Constraint Language (OCL) [43], an
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expression language to be used jointly with UML diagrams, and with Maude [16], a formal language allowing for reasoning
that is based on equational logic and rewriting logic. The analytical validation was executed in [28] through Briand et al.’s
property-based framework [9], which contains a set of intuitively derived axioms that formalize necessary properties that
metrics should satisfy in order to be considered as valid measures. In the theoretical validation process of these metrics
(Cruz-Lemus et al. [19]), we also used the Measurement Theory-based DISTANCE framework [46] that defines sufficient
properties for guaranteeing the construct validity of the empirical studies where these metrics were used. Through these
validations, all the metrics were characterized as ratio scale metrics, which is relevant when statistically analyzing the met-
rics values obtained in empirical studies. The empirical validation of some of these metrics as understandability indicators
was performed in [28,40].

3. Components of structural complexity

In this section we investigate the underlying dimensions of statechart diagram structural complexity that are captured by
the metrics presented in the previous section. Our previous empirical studies indicate that many of the metric values tend to
be correlated so we cannot conclude that the defined metrics are independent and each measure a completely different as-
pect of structural complexity. Consequently it is difficult to understand what structural complexity factors affect under-
standability and how these factors can be controlled. Further, it is not practical, nor economical to work with a large set
of metrics, some of which may be redundant or at least partially overlapping.

In order to identify the different components of structural complexity that are measured by our metrics we apply Prin-
cipal Component Analysis (PCA), which is a well-known statistical data reduction technique [30,34], to a set of metric data
collected from a large sample of UML statechart diagrams. PCA involves a series of statistical operations (e.g. determining
covariances for all pairs of observed variables) and matrix calculations (e.g. calculating eigenvectors for the covariance ma-
trix) on a data set to transform a number of (possibly) correlated observed (i.e. measured) variables into a, usually smaller,
number of uncorrelated newly identified variables. These new variables are called principal components (PC). The first PC ac-
counts for as much of the variability in the data as possible, and each succeeding PC accounts for as much of the remaining
variability as possible. So PCA is used to discover or reduce the dimensionality of the data set, where each identified PC rep-
resents one of the obtained orthogonal dimensions.

The extracted PCs can be seen as independent patterns of relationships between observed variables. The PCA algorithm
transforms the original data so that they are expressed in terms of these patterns instead of the observed variables. As the
number of PCs is equal to the number of observed variables and taken together they account for all variability in the data, no
information is lost in this process. The dimensionality in a data set can be reduced by removing PCs that do not contribute
much to explaining the variance in the original data set. The amount of variance accounted for by a given PC is represented
by a mathematical property of the PC, the eigenvalue (EV). The first PC identified through PCA will have the biggest EV and
subsequent PCs will have increasingly smaller EVs. Based on these EVs a cut-off for the PCs to retain can be determined. A
common criterion is the Kaiser criterion that sets the cut-off at one, so only PCs with an EV greater than 1.0 are retained. A PC
with an EV greater than 1.0 accounts for more variance than had been contributed by one (observed) variable, and that is
why the PC is worth to be retained if reducing dimensionality is the goal.

To interpret the retained PCs, factor loadings must be examined. A factor loading is equivalent to the bivariate correlation
between a PC and an observed variable. Thus a factor loading reflects the strength of the relationship between a PC and an ob-
served variable. Interpreting a PC means identifying the variables that have high loadings for that PC and finding out what these
variables have in common. One rule of thumb is to consider a factor loading high if it is greater than or equal to 0.5. Often the
pattern of factor loadings is not clear, but there exist solutions for this problem in the form of rotation operations. These oper-
ations result in patterns where the observed variables have either high or low factor loadings for the extracted components.

When applying PCA, larger samples are better than smaller samples, all other things being equal. Large samples tend to
minimize the probability of errors, maximize the efficiency of population estimates, and increase the generalizability of the
results. To obtain a large sample, we performed an extensive search in textbooks, journal papers and Internet sources in or-
der to find UML statechart diagrams to include in our sample. We finally used 92 different diagrams, which is sufficient con-
sidering the sample size guidelines provided in [30].

We acknowledge that our sample might not be representative for the entire population of UML statechart diagrams be-
cause it did not include diagrams from real software projects. Diagrams of the kind we used are often used as training mate-
rial. Obtaining real diagrams is difficult because they represent real economic value to companies and therefore, companies
are reluctant to make them publicly available. We thought it was more important for the reliability of our results to obtain a
large collection of diagrams, and therefore, educational models were used instead of real ones.

The values for the nine metrics presented in the previous section were calculated for each of the 92 diagrams (resulting in
a data set of 828 values) and next the PCA algorithm was applied. Results in the form of a factor pattern matrix are shown in
Table 1. The rows in this matrix stand for the nine metrics and the columns correspond to the extracted PCs, ordered from
left to right in decreasing order of EV. There were three PCs with an EV satisfying the Kaiser criterion. To obtain a clear pat-
tern of factor loadings a varimax rotation was used. The varimax rotation maximizes the variance of a column of the factor
pattern matrix, while keeping the components uncorrelated. So the values shown in the table are the factor loadings ob-
tained after applying the orthogonal varimax rotation. Factor loadings greater than or equal to 0.50 are shaded grey.
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Table 1
PCA results, after varimax rotation.

Principal components

PC1 PC2 PC3
NEntryA 6.759E-02 0.892 0.222
NEXitA —7.197E-02 0.898 —8.855E-02
NA 0.302 0.216 0.704
NSS 0.808 —9.190E-03 -0.153
NCS 0.335 7.296E-02 —0.769
NE 0.876 3.729E-02 7.187E-02
NG 0.664 —1.414E-02 0.211
NT 0.975 3.743E-03 -0.111
CcC 0.878 1.416E-02 —5.665E-02
CFF EEA NA
Variance explained (cumulative) 42.28% 61.65% 74.26%

The three PCs extracted, which jointly explain almost 75% of the variance in the data set, can be interpreted as follows:

e Control Flow Features (CFF), composed by the metrics with high loadings for PC 1, that is, NSS, NE, NG, NT and CC. All these
metrics have in common that they measure features, like the number of states, events, guards and state transitions, which
relate to the size and control flow complexity of the statechart.

e Entry/Exit Actions (EEA), is PC 2 composed by the metrics NEntryA and NEXitA, the actions performed when entering or
leaving a state. The PCA shows that these actions form a different aspect of structural complexity than the size and con-
trol-flow complexity of the statechart diagram.

e Number of Activities (NA). PC 3 is composed only by this metric. The number of do/Activities that a statechart diagram con-
tains has shown to be a metric that highly affects the understandability of a diagram [18], and it appears to constitute an
orthogonal dimension of structural complexity on its own.

Mathematically, a PC is a linear combination of the observed variables where the PCA algorithm determines the coeffi-
cients of these variables. So when measuring a set of statechart diagrams, the obtained metric values (nine per diagram)
can be transformed into a smaller set (three per diagram) that still explains almost 75% of the variance in the data. Instead
of using the original nine metrics, the three PCs can be used as independent variables in models that explain or predict UML
statechart diagram understandability.

Furthermore, it was surprising that the use of composite states (measured through the NCS metric) did not load highly on
any of the extracted structural complexity principal components, whereas we initially thought that composition could rep-
resent another dimension of structural complexity. After analyzing the experimental material we noticed that the selected
diagrams did use composite states, but this use was limited and not very complex. Therefore, we thought that composite
states deserved further investigation, and performed specific experiments in order to study deeply the effects of composite
states on the understandability of UML statechart diagrams. The complete process and results, that indicated that using com-
posite states did not significantly improve the understandability of simple UML statechart diagrams were published in [20].

4. A family of experiments

In this section we will describe each step of the experimental process [53] that we followed to empirically validate the
obtained components and evaluate their ability to serve as indicators for the understandability of UML statechart diagrams.

As Miller [39], Basili et al. [4] and Shull et al. [50], among others, suggested, simple studies rarely provide definite an-
swers. Following these suggestions, we have carried out a family of experiments.

Our family of experiments consists of a controlled experiment and two replications of this. A descriptive graph of the
chronology of the three experiments can be found in Fig. 1.

As most of the features are the same in the three members of the family, we will explain them together. However, we will
comment on any possible difference between them.

4.1. Step 1: Definition

Using the GQM [3] template for goal definition, the goal of the experiment and its replications could be stated as Analyze
the CFF, EEA and NA principal components of UML statechart diagrams structural complexity for the purpose of evaluating
with respect to the capability of being used as indicators of the understandability of UML statechart diagrams from the point
of view of researchers and in the context of Computer Science students and teachers.

Please cite this article in press as: J.A. Cruz-Lemus et al., The impact of structural complexity on the understandability of UML statechart
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Experiment (E1)

1st Replication (R1)

2nd Replication (R2)

8 fifth year students

24 third year students

49 third year students

10 professors UCLM, Ciudad Real UCLM, Ciudad Real
UCLM, Ciudad Real Spain Spain
Spain

Fig. 1. Chronology of the family of experiments.

4.2. Step 2: Planning
This phase consists of six different steps:

o Context selection. The context of the experiments was a group of academic staff members and undergraduate students of
UCLM and hence the experiment is run off-line, i.e. not in an industrial software development environment. In the first
experiment (E1), the subjects were 10 academic staff members of the Software Engineering area and eight students
enrolled in the last (5th) year of Computer Science at the Department of Computer Science at the University of Castil-
la-La Mancha. In the first replica (R1), there were 24 students in their third-year of Computer Science and in the second
replica (R2), 49 third-year students.

o Subjects selection. The subjects were chosen at our convenience. The experience of the subjects in UML statechart diagrams
in E1 was average for the students, as they had already taken two complete Software Engineering courses, and it was high
for the academic staff members, as they belonged to the Software Engineering area. In the replications, the experience of
the students was lower, as they had only taken one Software Engineering course, and it had not been completed at that
moment. All the academic staff members involved in the experiment took part voluntarily. We motivated all the students
to participate in the experiments by explaining to them that similar tasks to the experimental ones could be carried out in
exams or practice.

e Variable selection. The independent variables were the UML statechart diagrams structural complexity components SSF,
AWS and NA. The dependent variable was UML statechart diagrams understandability.

o Instrumentation. The subjects were given twenty UML statechart diagrams, selected from different sources and related to
different universes of discourse that were easy enough to be understood by each of the subjects. The structural complexity
of each diagram was different, covering a broad range of structural complexity metrics values. We consider this set of
twenty diagrams as a representative sample of the population of UML statechart diagrams that can be found in practice,
as they cover a broad range of values for the different metrics, as shown in Table 2. The metrics values for the 20 UML
statechart diagrams, were automatically calculated using GenMETRIC, a generic and extensible tool for software measure-
ment [25].

Each diagram also had a test enclosed. It included a questionnaire in order to evaluate if the subjects had really under-
stood the content of the UML statechart diagrams. Each questionnaire contained four questions, which were conceptually
similar and written in identical order. They inquired about navigation between states, values of variables after the execution,
values for guard conditions, etc. Furthermore, the subjects had to write down the time they started answering the question-
naire and the time they finished. The difference between these two values, expressed in seconds, is what we called under-
standability time. Diagram 20 can be found as an example in Appendix A, at the end of this document. The dependent
variable, i.e. the understandability of the diagrams, was measured by the time the subject spent answering the questionnaire
attached to each diagram (understandability time) and by understandability efficiency, defined through the following formula:

understandability efficiency(UEff) = correctness/understandability time (1)

As we can see in the formula, the understandability efficiency of a diagram is a measure that relates how correctly (mea-
sured by the number of right answers relative to the number of questions answered) and how quickly a subject understood a
diagram. This measure has been previously employed as an understandability indicator [8].

We have tried some other formulas for measuring the understandability, e.g. using the time as stand-alone indicator, but
the results were not better. Besides, there is a general agreement [6] in using understandability efficiency as a good under-
standability indicator

e Hypothesis formulation. We formulated the following hypotheses:
Ho 1: There is no significant correlation between the UML statechart diagrams structural complexity components CFF,
EEA and NA, and understandability time. H; ; : =Hg
Ho2: There is no significant correlation between the UML statechart diagrams structural complexity components CFF,
EEA and NA, and understandability efficiency. H;, : =Hg>
o Experiment design. We selected a within-subject design experiment, i.e. every diagram was given to every subject. How-
ever, the diagrams were ordered differently before being given to the subjects for cancelling out potential learning effects.
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Table 2
Metrics values for each statechart diagram.
Diagram NEntryA NEXitA NA NSS NCS NE NG NT cC
1 1 1 0 3 0 6 2 5 0
2 1 0 3 4 0 6 0 7 1
3 2 0 2 4 1 4 3 7 1
4 0 0 2 4 0 11 2 9 3
5 3 2 2 4 0 13 0 10 4
6 6 6 0 6 1 12 0 13 5
7 1 0 1 5 2 6 3 10 3
8 1 0 3 5 0 12 4 13 6
9 1] 0 3 5 0 8 0 11 4
10 2 1 0 4 0 6 0 6 0
11 1 2 1 6 3 12 0 17 9
12 1 1 1 3 0 5 2 5 0
13 2 1 0 2 0 4 0 4 0
14 1 1 2 3 0 8 0 9 4
15 1 0 4 9 1 11 4 13 2
16 0 0 5 9 0 23 1 23 12
17 2 0 1 5 1 6 2 8 1
18 2 0 1 12 0 23 2 24 10
19 0 1 0 2 0 5 0 5 1
20 1] 0 0 5 1 11 0 12 5

4.3. Step 3: Operation
In this phase, experimental data are collected. It includes the following activities:

e Preparation. In E1, the experience that the subjects had in working with UML statechart diagrams was higher than in R1
and R2, so we decided to give the subjects in the replications an intensive training session before the experiments took
place. However, the subjects were not aware of which aspects we intended to study, nor were they informed about the
hypotheses stated.

e Execution. The first experiment was performed without supervision. The subjects were given all the described materials
and told to bring it back answered in one week. However, the replications were run in a 2-h session and there was an
instructor who supervised the experiment and could solve any asked doubt, although the instructor was finally not asked
any question.

e Data Validation. Once the data were collected, we corrected them and noted down the different times and the number of
answered (right and wrong) questions. From these values, we calculated the two measures of the dependent variable: the
understandability time and efficiency. We also calculated the principal component values for CFF and EEA based on the
structural complexity metric values using the coefficients determined by the PCA algorithm.

5. Data analysis and interpretation

First we tested the impact of the three extracted complexity components (CFF, EEA and NA) on the understandability of
the UML statechart diagrams in terms of understandability time and efficiency through an ANOVA test. After that, we built a
preliminary understandability prediction model by means of a regression analysis using a technique specifically recom-
mended when the data had been obtained through a repeated measures design [36].

5.1. Impact of structural complexity on understandability

To test the impact of structural complexity on understandability a data analysis strategy is needed that evaluates the joint
effect of the three complexity components, but also allows evaluating individual impacts and pairwise interaction effects. To
test these individual, interaction and joint effects, we considered each of the complexity components as a treatment that can
be administered, independent of the administration of other treatments. To simplify the analysis, each treatment was con-
sidered at only two levels: a high level and a low level, resulting in eight possible combinations. To determine what is ‘high’
or ‘low’, the average value for each component in the set of 20 diagrams was calculated. For each diagram in the sample, if
the value of a structural complexity component was over the mean value, that diagram scored ‘high’ on the component;
otherwise it scored ‘low’ for that component.

Next, a sub-set of the 20 diagrams representing all possible combinations of values (either high or low) for the three com-
ponents was selected. This way we randomly selected a set of 8 diagrams, whose metrics values fulfilled the requirements
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shown in Table 3, in which, a ‘H’ stands for a High value of the component comparing its value with the other diagrams’ val-
ues (in the full sample of 20 diagrams) and a ‘L’ stands for a low value.

In order to test the hypotheses, we had valid values for 84 subjects after rejecting some data for being incomplete. Since
the experimental design comprised repeated measures we performed a general linear model for repeated measures. Table 4
shows the obtained results for the main and interaction effects of each component on understandability time and efficiency
when applying multivariate contrast indicators (using an alpha value of 0.05) obtained through an ANOVA. An ANOVA (acro-
nym for Analysis of Variances) is a statistical technique for determining the degree of difference or similarity between two or
more groups of data. It is based on the comparison of the average value of a common component [52].

The values in Table 4 are the significances of the statistical used (Miller’s F in this case). A value of “< 0.001”, means that
we can reject the stated null-hypothesis with, at least, a 99.999% of chance of not making a mistake.

As we can see in Table 4, with respect to understandability time, all the components and their combinations (except the
CFF component) had a significant impact. As for the understandability efficiency, only the interaction of the components CFF
and EEA is not significant, as all the rest of values are below the cutting edge (0,05). For demonstrating interaction effects, we
attach, as an example, a graphical image of the relationship between two structural complexity components, i.e. the EEA and
NA components. In this case, both for high and low values of the NA component, a low value for the EEA component is asso-
ciated to higher understandability efficiency. The graph shows, however, that the pitch line improvement is superior when
NA is high, which indicates the existence of an interaction effect between EEA and NA (see Fig. 2).

5.2. Understandability model

Since we used a repeated measures design, we realized that the commonly used regression approaches were not appro-
priate for the data collected in the family of experiments. Hence, we used a technique outlined in [36] called Individual
Regression Equations, which is especially designed for repeated measures.

The process consists of two main steps. First, we compute separate regression equations for each subject in the family of
experiments. This way each of the resulting 84 equations represents the best description for a particular subject between
both the understandability time and efficiency and the set of predictor variables. At this point, the obtained regression coef-
ficients are used to form an N*P table in which the N subjects represent rows and the P predictor variables the columns. We
do not display this table as the amount of data is excessively big.

In the second step of the process, we summarized each regression coefficient for the 84 equations to see if it differs reli-
ably from zero. This can be done with t tests. The Student’s t-test is a statistical test comparing means of normal populations
with unknown standard deviations [52]. The results of these tests are summarized in Tables 5 and 6 for the understandability
time and efficiency.

Tables 5 and 6 show the different results obtained after performing a t test analysis for the different components. They
show the mean value, the standard deviation, the value for the t statistic and the level of significance.

Since all regression coefficients were significant, except for EEA in the regression model for UT, we obtained two different
regression equations that could be used for estimating the understandability time and efficiency based on the different com-
plexity components:

Table 3
Diagram selection.
Pattern CFF EEA NA Diagram
1 H H H 5
2 H H L 6
3 H L H 16
4 H L L 20
5 L H H 3
6 L H L 13
7 L 1L H 2
8 L L L 19
Table 4
ANOVA results (p values).
Effect Understandability time Understandability efficiency
CFF 0.218 0.009
EEA < 0.001 < 0.001
NA < 0.001 < 0.001
CFF_EEA < 0.001 0.404
CFF NA < 0.001 < 0.001
EEA NA < 0.001 0.008
CFF EEA NA < 0.001 < 0.001
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Fig. 2. Estimated edge measure for understandability efficiency (EEA*NA).
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Fig. 3. Diagram 20 - VCR.

Table 5
t Test results for the regression models (understandability time).

Understandability time

Variable CONST NA CFF EEA

Mean 103.2887 8.7019 2.3591 2.0872

Std. Dev. 2.9558 1.0278 0.3871 1.1511

t 34.994 8.467 6.094 1.813

sig. < 0.001 < 0.001 < 0.001 0.073
Table 6

t Test results for the regression models (understandability efficiency).

Understandability efficiency

Variable CONST NA CFF EEA

Mean 0.011575 —0.000813 —0.000204 —0.000273
Std. Dev. 0.000335 0.000071 0.000022 0.000073

t 34.573 -11.452 -9.207 -3.720
sig. <0.001 <0.001 <0.001 <0.001
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o For the understandability time (UT):
UT = 103.2887 + 8.7019"NA + 2.3591"CFF + 2.0872"EEA

o For the understandability efficiency (UEff):

UEff = 0.011575 — 0.000813"NA — 0.000204"CFF — 0.000273"EEA

These equations mean that the lower the values of NA, CFF and EEA are the lower the understandability time and effi-
ciency will be. Besides, the higher coefficient parameter is NA, which means that UML statechart diagrams with many activ-
ities are more difficult to understand.

As expected, these equations show that the structural complexity of UML statechart diagrams negatively impacts the
understandability efficiency and also directly affects the time necessary to get a good understanding of the diagrams. The
higher the values of the complexity components are, the lower the efficiency demonstrated in understanding UML statechart
diagrams. This gives reason to believe that these structural complexity components can serve as early indicators of model
understandability.

6. Conclusions, limitations and future work

Given the scarcity of metrics for measuring quality characteristics of behavioural models we have previously defined a set
of nine metrics for the structural complexity of UML statechart diagrams [19]. The main focus of the current study was the
reduction of these metrics to a manageable set of structural complexity dimensions that can be used as early understand-
ability indicators. The empirical data necessary for performing this validation was obtained through a family of experiments.

Using a sample of 92 UML statechart diagrams, we performed a Principal Component Analysis in order to discover the
underlying dimensions of structural complexity that is measured by the metrics and thus to reduce the number of measure-
ments to work with. This analysis showed that the effect of the metrics could be grouped into three different components:

o Control Flow Features (CFF), composed by a set of metrics that have in common that they capture the control flow com-
plexity of the statechart.

e Entry/Exit Actions (EEA), composed by the metrics that quantify the actions performed after entering or leaving a state.

e Number of Activities (NA), a metric measuring he total number of activities (do/activity) in the statechart diagram.

Second, we tested and confirmed the hypotheses concerning the impact of the three structural complexity components
on the understandability time and efficiency. Finally, we built a preliminary understandability model using the Individual
Regression Equations [36] technique specifically designed for data obtained through repeated measures. The resulting regres-
sion model corroborates the hypotheses that these complexity factors influence the understandability of UML statechart dia-
grams. Using these equations, modellers can foresee how easy to understand their models will be and, therefore, focusing
their modelling efforts in using those meta-model constructs that have a fewer negative influence on the understandability
of the UML statechart diagrams.

Even though these findings are encouraging we consider them as preliminary because of the limitations of the current
study. A first limitation is that the analysis performed here is based on correlations. We have demonstrated that structural
complexity components have a statistically and practically significant relationship with the understandability of UML
statechart diagrams. Such correlational relationships do not demonstrate per se a causal relationship. They only provide
empirical evidence of it. Only controlled experiments, where the components or metrics were varied in a controlled man-
ner and all other factors were held constant, could really demonstrate causality. However, such a controlled experiment
would be difficult to perform, since varying structural complexity in a system, while preserving its functionality, is difficult
in practice.

Further, the generalisation capabilities of the current study must be evaluated. Two main threats to external validity can
be identified:

e Materials used. In the experiment we tried to use statechart diagrams which are realistic (being used as training material),
though not taken from real industry cases.

e Subjects. To solve the difficulty of obtaining professional subjects, we used academic staff members and students from
software engineering courses. We are aware that more experiments with professional practitioners must be carried out
in order to be able to generalize these results. However, in this case, the tasks to be performed did not require high levels
of industrial experience, so experiments with students could be considered as appropriate [4,32]. Moreover, students are
the next generation of professionals, so they are close to the population under study [33].

Further research might also take into account the limitations of the current research design. Since we had a repeated mea-
sures design, the used regression technique was adapted and although this technique accurately estimates the regression
coefficients and tests the effects of each variable, it was not possible to calculate R? values in the regression analysis phase.
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Also, as future work, we plan to perform model refactoring to UML statechart diagrams in order to check if functionality is
preserved between models while the understandability of the diagrams improves.
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Appendix A. A.1. Diagram 20: VCR (Fig. 3)

CHECK TIME (HH:MM:SS):
Please answer the following questions:

(1) If while being in the state STOP the event rev occurs, which state do you get?

(2) If we were in the state STOP and we have reached the state RECORD, which event would have occurred at least?

(3) Which events and/or conditions would have occurred and in which order for going from the state RECORD to the state
PLAY?

(4) Starting at the state STOP, which state would you reach if the following sequence of events and conditions occurs?: (1)
ff, (2) play, (3) change direction, (4) stop, (5) rec.

CHECK TIME (HH:MM:SS): ___
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